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We show that the large-N limits of certain conformal field theories in various
dimensions include in their Hilbert space a sector describing supergravity on the
product of anti-de Sitter spacetimes, spheres, and other compact manifolds. This
is shown by taking some branes in the full M/string theory and then taking a
low-energy limit where the field theory on the brane decouples from the bulk.
We observe that, in this limit, we can still trust the near-horizon geometry for
large N. The enhanced supersymmetries of the near-horizon geometry correspond
to the extra supersymmetry generators present in the superconformal group (as
opposed to just the super-PoincareÂgroup). The ’ t Hooft limit of 3 1 1 1 5 4
super-Yang±Mills at the conformal point is shown to contain strings: they are
IIB strings. We conjecture that compactifications of M/string theory on various
anti-de Sitter spacetimes is dual to various conformal field theories. This leads
to a new proposal for a definition of M-theory which could be extended to include
five noncompact dimensions.

1. GENERAL IDEA

In the last few years it has been extremely fruitful to derive quantum

field theories by taking various limits of string or M-theory. In some cases

this is done by considering the theory at geometric singularities and in others

by considering a configuration containing branes and then taking a limit

where the dynamics on the brane decouples from the bulk. In this paper we
consider theories that are obtained by decoupling theories on branes from

gravity. We focus on conformal invariant field theories, but a similar analysis

could be done for nonconformal field theories. The cases considered include

N parallel D3 branes in IIB string theory and various others. We take the

limit where the field theory on the brane decouples from the bulk. At the
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same time we look at the near-horizon geometry and we argue that the

supergravity solution can be trusted as long as N is large. N is kept fixed as

we take the limit. The approach is similar to that used in ref. 1 to study the
NS fivebrane theory [2] at finite temperature. The supergravity solution

typically reduces to ( p 1 2) dimensional anti-de Sitter space (AdSp 1 2) times

spheres (for D3 branes we have AdS5 3 S 5). The curvature of the sphere

and the AdS space in Planck units is a (positive) power of 1/N. Therefore

the solutions can be trusted as long as N is large. Finite-temperature configura-

tions in the decoupled field theory correspond to black hole configurations

in AdS spacetimes. These black holes will Hawking radiate into the AdS
spacetime. We conclude that excitations of the AdS spacetime are included

in the Hilbert space of the corresponding conformal field theories. A theory

in AdS spacetime is not completely well defined since there is a horizon and

it is also necessary to give some boundary conditions at infinity. However,

local properties and local processes can be calculated in supergravity when

N is large if the proper energies involved are much bigger than the energy

scale set by the cosmological constant (and smaller than the Planck scale).

We will conjecture that the full quantum M/string theory on AdS space plus

suitable boundary conditions is dual to the corresponding brane theory. We

are not going to specify the boundary conditions in AdS; we leave this

interesting problem for the future. The AdS 3 (spheres) description will

become useful for large N, where we can isolate some local processes from

the question of boundary conditions. The supersymmetries of both theories

agree; both are given by the superconformal group. The superconformal

group has twice the number of supersymmetries of the corresponding super-

PoincareÂgroup[3, 4]. This enhancement of supersymmetry near the horizon

of extremal black holes was observed in refs. 5 and 6 precisely by showing

that the near throat geometry reduces to AdS 3 (spheres). AdS spaces (and

branes in them) have been extensively considered [7±13],2 including the

connection with the superconformal group.

In Section 2 we study 1 5 4, d 5 4, U(N ) super-Yang±Mills as a first

example; we discuss several issues which are present in all other cases. In

Section 3 we analyze the theories describing M-theory five-branes and M-

theory two-branes. In Section 4 we consider theories with lower supersymme-

try which are related to a black string in six dimensions made with D1 and

D5 branes. In Section 5 we study theories with even less supersymmetry

involving black strings in five dimensions, and finally we mention the theories

related to extremal Reissner±NordstroÈ m black holes in four spacetime dimen-

sions (these last cases will be more speculative and contain some unresolved

2 See ref. 7 for ª gaugedº supergravities.
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puzzles). Finally in Section 6 we make some comments on the relation to

matrix theory.

2. D3 BRANES OR 1 5 4 U(N) SUPER-YANG ± MILLS IN
d 5 3 1 1

We start with type IIB string theory with string coupling g, which will

remain fixed. Consider N parallel D3 branes separated by some distance

which we denote by r. For low energies the theory on the D3 brane decouples

from the bulk. It is more convenient to take the energies fixed and take

a 8 ® 0, U [ r/ a 8 5 fixed (2.1)

The second condition says that we keep the mass of the stretched strings
fixed. As we take the decoupling limit we bring the branes together, but the

Higgs expectation values corresponding to this separation remain fixed. The

resulting theory on the brane is four dimensional, 1 5 4 U(N ) SYM. Let

us consider the theory at the superconformal point, where r 5 0. The confor-

mal group is SO(2,4). We also have an SO(6) , SU(4) R-symmetry that rotates

the six scalar fields into each other.3 The superconformal group includes twice
the number of supersymmetries as the super-PoincareÂgroup: the commutator

of special conformal transformations with PoincareÂsupersymmetry generators

gives the new supersymmetry generators. The precise superconformal algebra

was computed in ref. 3. All this is valid for any N.

Now we consider the supergravity solution carrying D3 brane charge

[14],

ds2 5 f 2 1/2dx2
| 1 f 1/2(dr 2 1 r 2d V 2

5)

f 5 1 1
4 p gN a 82

r 4 (2.2)

where x| denotes the four coordinates along the worldvolume of the three-

brane and d V 2
5 is the metric on the unit five-sphere.4 The self-dual five-form

field strength is nonzero and has a flux on the five-sphere. Now we define

the new variable U [ r/ a 8 and we rewrite the metric in terms of U. Then

we take the a 8 ® 0 limit. Notice that U remains fixed. In this limit we can
neglect the 1 in the harmonic function (2.2). The metric becomes

3 The representation includes objects in the spinor representations, so we should be talking
about SU(4); we will not make this or similar distinctions in what follows.

4 We choose conventions where g ® 1/g under S-duality.
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ds2 5 a 8 F U 2

! 4 p gN
dx2

| 1 ! 4 p gN
dU 2

U 2 1 ! 4 p gN d V 2
5 G (2.3)

This metric describes five-dimensional anti-de Sitter (AdS5) times a five-

sphere.5 We see that there is an overall a 8 factor. The metric remains constant
in a 8 units. The radius of the five-sphere is R2

sph / a 8 5 ! 4 p gN, and is the

same as the ª radiusº of AdS5 (as defined in the Appendix). In ten-dimensional

Planck units they are both proportional to N 1/4. The radius is quantized

because the flux of the 5-form field strength on the 5-sphere is quantized.

We can trust the supergravity solution when

gN À 1 (2.4)

When N is large we have approximately ten-dimensional flat space in the
neighborhood of any point.6 Note that in the large-N limit the flux of the 5-

form field strength per unit Planck (or string) 5-volume becomes small.

Now consider a near-extremal black D3 brane solution in the decoupling

limit (2.1). We keep the energy density on the brane worldvolume theory

( m ) fixed. We find the metric

ds2 5 a 8 H U 2

! 4 p gN F 2 1 1 2
U 4

0

U 4 2 dt 2 1 dx 2
i G

1 ! 4 p gN
dU 2

U 2(1 2 U 4
0 /U 4)

1 ! 4 p gN d V 2
5 J

U 4
0 5

27

3
p 4g2 m (2.5)

We see that U0 remains finite when we take the a 8 ® 0 limit. The situation

is similar to that encountered in ref. 1. Naively, the whole metric is becoming

of zero size since we have a power of a 8 in front of the metric, and we might

incorrectly conclude that we should only consider the zero modes of all
fields. However, energies that are finite from the point of view of the gauge

theory lead to proper energies (measured with respect to proper time) that

remain finite in a 8 units (or Planck units, since g is fixed). More con-

cretely, an excitation that has energy v (fixed in the limit) from the point of

view of the gauge theory will have proper energy Eproper 5
(1/ ! a 8) v (gN4 p )1/4/U. This also means that the corresponding proper wave-
lengths remain fixed. In other words, the spacetime action on this background

5 See the Appendix for a brief description of AdS spacetimes.
6 In writing (2.4) we assumed that g # 1; if g . 1, then the condition is N/g À 1. In other
words, we need large N, not large g.
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has the form S , (1/ a 84) * d 10x ! GR 1 ? ? ? , so we can cancel the factor of

a 8 in the metric and the Newton constant, leaving a theory with a finite

Planck length in the limit. Therefore we should consider fields that propagate
on the AdS background. Since the Hawking temperature is finite, there is a

flux of energy from the black hole to the AdS spacetime. Since 1 5 4, d 5
4, U(N ) SYM is a unitary theory we conclude that, for large N, it includes
in its Hilbert space the states of type IIB supergravity on (AdS5 3 S5)N ,

where the subscript indicates the fact that the ª radiiº in Planck units are

proportional to N 1/4. In particular, the theory contains gravitons propagating
on (AdS5 3 S5)N. When we consider supergravity on AdS5 3 S5, we are faced

with global issues like the presence of a horizon and the boundary conditions

at infinity. It is interesting to note that the solution is nonsingular [15]. The

gauge theory should provide us with a specific choice of boundary conditions.

It would be interesting to determine them.

We started with a quantum theory and saw that it includes gravity, so
it is natural to think that this correspondence goes beyond the supergravity

approximation. We are led to the conjecture that type IIB string theory on
(AdS5 3 S5)N plus some appropriate boundary conditions (and possibly also
some boundary degrees of freedom) is dual to N 5 4, d 5 3 1 1, U(N )

super-Yang ± Mills. The SYM coupling is given by the (complex) IIB string
coupling; more precisely

1

g2
YM

1 i
u

8 p 2 5
1

2 p 1 1

g
1 i

x
2 p 2

where x is the value of the RR scalar.

The supersymmetry group of AdS5 3 S5 is known to be the same as the

superconformal group in 3 1 1 spacetime dimensions [3], so the supersym-

metries of both theories are the same. This is a new form of ª dualityº : a
large-N field theory is related to a string theory on some background; notice

that the correspondence is nonperturbative in g and the SL(2, Z ) symmetry

of type IIB would follow as a consequence of the SL(2, Z ) symmetry of

SYM.7 It is also a strong±weak coupling correspondence in the following

sense. When the effective coupling gN becomes large we cannot trust perturba-

tive calculations in the Yang±Mills theory, but we can trust calculations in
supergravity on (AdS5 3 S5)N. This suggests that the 1 5 4 Yang±Mills

master field is the anti-de Sitter supergravity solution (similar ideas were

suggested in ref. 17). Since N measures the size of the geometry in Planck

units, we see that quantum effects in AdS5 3 S5 have the interpretation of

1/N effects in the gauge theory. So Hawking radiation is a 1/N effect. It

7 This is similar in spirit to ref. 16, but here N is not interpreted as momentum.
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would be interesting to understand more precisely what the horizon means

from the gauge theory point of view. IIB supergravity on AdS5 3 S5 was

studied in [7, 9].

The above conjecture becomes nontrivial for large N and gives a way

to answer some large-N questions in the SYM theory. For example, suppose

that we break U(N ) ® U(N 2 1) 3 U(1) by Higgsing. This corresponds to

putting a 3-brane at some point on the 5-sphere and some value of U, with

worldvolume directions along the original four dimensions (x|). We could

now ask what the low-energy effective action is for the light U(1) fields. For

large N, (2.4), it is the action of a D3 brane in AdS5 3 S5. More concretely,

the bosonic part of the action becomes the Born±Infeld action on the AdS

background:

S 5 2
1

(2 p )3g # d 4x h 2 1

3 [ ! 2 Det( h a b 1 h - a U - b U 1 U 2hgij - a u i - b u j 1 2 p ! hF a b ) 2 1]

h 5
4 p gN

U 4 (2.6)

with a , b 5 0, 1, 2, 3; i, j 5 1, . . . , 5; and gij is the metric of the unit 5-

sphere. Like any low-energy action, (2.6) is valid when the energies are low

compared to the mass of the massive states that we are integrating out. In

this case the mass of the massive states is proportional to U (with no factors

of N ). The low-energy condition translates into - U/U ¿ U and - u i ¿ U,

etc. So the nonlinear terms in the action (2.6) will be important only when

gN is large. It seems that the form of this action is completely determined

by superconformal invariance, by using the broken and unbroken supersym-

metries, in the same sense that the Born±Infeld action in flat space is given

by the full PoincareÂsupersymmetry [18]. It would be very interesting to

check this explicitly. We will show this for a particular term in the action.

We set u i 5 const and F 5 0, so that we only have U left. Then we will show

that the action is completely determined by broken conformal invariance. This

can be seen as follows. Using Lorentz invariance and scaling symmetry

(dimensional analysis), one can show that the action must have the form

S 5 # dp 1 1xU p 1 1f ( - a U - a U/U 4) (2.7)

where f is an arbitrary function. Now we consider infinitesimal special confor-

mal transformations
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d x a 5 e b x b x a 2 e a 1 x2 1
RÄ 4

U 2 2 /2 (2.8)

d U [ U 8(x8) 2 U(x) 5 2 e a x a U

where e a is an infinitesimal parameter. For the moment RÄ is an arbitrary

constant. We will later identify it with the ª radiusº of AdS; it will turn out

that RÄ 4 , gN. In the limit of small RÄ we recover the more familiar form of
the conformal transformations (U is a weight-one field). Usually conformal

transformations do not involve the variable U in the transformations of x.

For constant U the extra term in (2.8) is a translation in x, but we will take

U to be a slowly varying function of x and we will determine RÄ from other

facts that we know. Demanding that (2.7) is invariant under (2.8), we find
that the function f in (2.7) obeys the equation

f (z) 1 const 5 2 1 z 1
1

RÄ 4 2 f 8(z) (2.9)

which is solved by f 5 b[ ! 1 1 RÄ 4z 2 a]. Now we can determine the con-

stants a, b, RÄ from supersymmetry. We need to use three facts. The first is

that there is no force (no vacuum energy) for a constant U. This implies a 5
1. The second is that the - U 2 term (F 2 term) in the U(1) action is not

renormalized. The third is that the only contribution to the ( - U )4 term (an
F 4 term) comes from a one-loop diagram [19]. This determines all the coeffi-

cients to be those expected from (2.6) including the fact that RÄ 4 5 4 p gN. It

seems very plausible that using all 32 supersymmetries, we could fix the

action (2.6) completely. This would be saying that (2.6) is a consequence of

the symmetries and thus not a prediction.8 However, we can make very

nontrivial predictions (though we were not able to check them). For example,
if we take g to be small (but N large) we can predict that the Yang±Mills

theory contains strings. More precisely, in the limit g ® 0, gN 5 fixed À

1 (`t Hooft limit) we find free strings in the spectrum; they are IIB strings

moving in (AdS5 3 S5)gN.9 The sense in which these strings are present is

rather subtle since there is no energy scale in the Yang±Mills to set their

tension. In fact one should translate the mass of a string state from the AdS
description to the Yang±Mills description. This translation will involve the

8 Notice that the action (2.6) includes a term proportional to v6 similar to that calculated in ref.
20. Conformal symmetry explains the agreement that they would have found if they had done
the calculation for 3 1 1 SYM as opposed to 0 1 1.

9 In fact, Polyakov [21] recently proposed that the string theory describing bosonic Yang±Mills
has a new dimension corresponding to the Liouville mode w , and that the metric at w 5 0 is
zero due to a ª zigzagº symmetry. In our case we see that the physical distances along the
directions of the brane contract to zero as U ® 0. The details are different, since we are
considering the 1 5 4 theory.
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position U at which the string is sitting. This sets the scale for its mass. As

an example, consider again the D-brane probe (Higgs configuration) which

we described above. From the type IIB description we expect open strings
ending on the D3 brane probe. From the point of view of the gauge theory

these open strings have energies E 5 [U/(4 p gN 1/4] ! Nopen, where Nopen is an

integer characterizing the massive open string level. In this example we see

that a 8 disappears when we translate the energies and is replaced by U, which

is the energy scale of the Higgs field that is breaking the symmetry.

Now we turn to the question of the physical interpretation of U. U has
dimensions of mass. It seems natural to interpret motion in U as moving in

energy scales, going to the IR for small U and to the UV for large U. For

example, consider a D3 brane sitting at some position U. Due to the conformal

symmetry, all physics at energy scales v in this theory is the same as physics

at energies v 8 5 l v , with the brane sitting at U 8 5 l U.

Now let us turn to another question. We could separate a group of D3
branes from the point where they were all sitting originally. Fortunately, for

the extremal case we can find a supergravity solution describing this system.

All we have to do is the replacement

N

U 4 ®
N 2 M

U 4 1
M

|
-

U 2
-

W | 4
(2.10)

where
-

W 5
-
r / a 8 is the separation. It is a vector because we have to specify

a point on S5 also. The resulting metric is

ds2 5 a 8 F U 2 1

! 4 p g(N 2 M 1 MU4/ |
-

U 2 W | 4)1/2
dx2

| (2.11)

1 ! 4 p g
1

U 2 1 N 2 M 1
MU4

|
-

U 2 W | 4 2
1/2

d
-

U 2 G
For large U À | W | we find basically the solution for (AdS5) 3 S5)N , which

is interpreted as saying that for large energies we do not see the fact that the
conformal symmetry was broken, while for small U ¿ | W | we find just

(AdS5 3 S5)N 2 M, which is associated to the CFT of the unbroken U(N 2 M )

piece. Furthermore, if we consider the region |
-

U 2
-

W | ¿ |
-

W | , we find

(AdS5 3 S5)M , which is described by the CFT of the U(M ) piece.

We could in principle separate all the branes from each other. For large

values of U we would still have (AdS5 3 S5)N , but for small values of U we
would not be able to trust the supergravity solution, but we naively get N
copies of (AdS5 3 S5)1, which should correspond to the U(1)N.

Now we discuss the issue of compactification. We want to consider the

YM theory compactified on a torus of radii Ri , xi , xi 1 2 p Ri , which stay
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fixed as we take the a 8 ® 0 limit. Compactifying the theory breaks conformal

invariance and leaves only the PoincareÂsupersymmetries. However, one can

still find the supergravity solutions and follow the above procedure, going
near the horizon, etc. The AdS piece will contain some identifications. So

we will be able to trust the supergravity solution as long as the physical

length of these compact circles stays big in a 8 units. This implies that we

can trust the supergravity solution as long as we stay far from the horizon

(at U 5 0)

U À
(gN )1/4

Ri

(2.12)

for all i. This is a larger bound than the naive expectation (1/Ri). If we were

considering near-extremal black holes, we would require that U0 in (2.5)

satisfy (2.12), which is, of course, the same condition on the temperature

found in ref. 22.

The relation of the 3-brane supergravity solution and the Yang±Mills

theory has been studied in refs. 23±26. All the calculations have been done
for near-extremal D3 branes fall into the category described above. In particu-

lar the absorption cross section of the dilaton and the graviton have been

shown to agree with what one would calculate in the YM theory [24, 25].

It has been shown [26] that some of these agreements are due to nonrenormal -

ization theorems for 1 5 4 YM. The black hole entropy was compared to

the perturbative YM calculation and it agrees up to a numerical factor [23].
This is not in disagreement with the correspondence we were suggesting. It

is expected that large-gN effects change this numerical factor; this problem

remains unsolved.

Finally notice that the group SO(2, 4) 3 SO(6) suggests a 12-dimensional

realization in a theory with two times [27].

3. OTHER CASES WITH 16 ® 32 SUPERSYMMETRIES, M5 AND
M2 BRANE THEORIES

Basically all that we have said for the D3 brane carries over for the

other conformal field theories describing coincident M-theory fivebranes and

M-theory twobranes. We describe below the limits that should be taken in
each of the two cases. Similar remarks can be made about the entropies [28],

and the determination of the probe actions using superconformal invariance.

Eleven-dimensional supergravity on the corresponding AdS spaces was stud-

ied in refs. 8, 10, 11, and 15.
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3.1. M Fivebrane

The decoupling limit is obtained by taking the 11-dimensional Planck

length to zero, lp ® 0, keeping the worldvolume energies fixed, and taking
the separations U 2 [ r/l3p 5 fixed [29]. This last condition ensures that the

membranes stretching between fivebranes give rise to strings with finite

tension.

The metric is10

ds2 5 f 2 1/3 dx2
| 1 f 2/3(dr 2 1 r 2d V 2

4) (3.1)

f 5 1 1
p Nl3

p

r 3

We also have a flux of the 4-form field strength on the 4-sphere (which is

quantized). Again, in the limit we obtain

ds2 5 l 2
p F U 2

( p N )1/3 dx2
| 1 4( p N )2/3 dU 2

U 2 1 ( p N )2/3 d V 2
4 G (3.2)

where now the ª radiiº of the sphere and the AdS7 space are Rsph 5 RAdS /2 5
lp( p N )1/3. Again, the ª radiiº are fixed in Planck units as we take lp ® 0, and
supergravity can be applied if N À 1.

Reasoning as above, we conclude that this theory contains seven-dimen-

sional anti-deSitter times a 4-sphere, which for large N looks locally like 11-

dimensional Minkowski space.

This gives us a method to calculate properties of the large-N limit of

the six-dimensional (0,2) conformal field theory [30]. The superconformal
group again coincides with the algebra of the supersymmetries preserved by

AdS7 3 S4. The bosonic symmetries are SO(2, 6) 3 SO(5) [4]. We can do

brane probe calculations, thermodynamic calculations [28], etc.

The conjecture is now that the (0,2) conformal field theory is dual to
M-theory on (AdS7 3 S4)N; the subscript indicates the dependence of the

ª radiusº on N.

3.2. M2 Brane

We now take the limit lp ® 0 keeping U 1/2 [ r/l3/2
p 5 fixed. This combi-

nation has to remain fixed because the scalar field describing the motion of

the twobrane has scaling dimension 1/2. Alternatively we could have derived
this conformal field theory by taking first the field theory limit of D2 branes

in string theory as in refs. 31±33 and then taking the strong-coupling limit

10 In our conventions the relation of the Planck length to the 11-dimensional Newton constant
is G11

N 5 16 p 7l 9
p.
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of that theory to get to the conformal point as in refs. 34±36. The fact that

the theories obtained in this fashion are the same can be seen as follows.

The D2 brane gauge theory can be obtained as the limit a 8 ® 0, keeping
g2

YM , g/ a 8 5 fixed. This is the same as the limit of M-theory twobranes in

the limit lp ® 0 with R11 /l3/2
p , gYM 5 fixed. This is a theory where one of

the Higgs fields is compact. Taking R11 ® ` , we see that we get the theory of

coincident M2 branes, in which the SO(8) R-symmetry has an obvious origin.

The metric is

ds2 5 f 2 2/3dx2
| 1 f 1/3(dr 2 1 r 2 d V 2

7)

f 5 1 1
25 p 2Nl6

p

r 6 (3.3)

and there is a nonzero flux of the dual of the 4-form field strength on the 7-

sphere. In the decoupling limit we obtain AdS4 3 S 7, and the supersymmetries

work out correctly. The bosonic generators are given by SO(2, 3) 3 SO(8).

In this case the ª radiiº of the sphere and AdS4 are Rsph 5 2RAdS 5 lp(2
5 p 2N )1/6.

The entropy of the near-extremal solution agrees with the expectation

from dimensional analysis for a conformal theory in 2 1 1 dimensions [28],

but neither the N dependence nor the numerical coefficients are understood.

Actually for the case of the twobrane the conformal symmetry was used

to determine the v4 term in the probe action [37]; we are further saying that

conformal invariance determines it to all orders in the velocity of the probe.
Furthermore , the duality we have proposed with M-theory on AdS4 3 S 7

determines the precise numerical coefficient.

When M-theory is involved the dimensionalities of the groups are sug-

gestive of a 13-dimensional realization [38].

4. THEORIES WITH 8 ® 16 SUPERSYMMETRIES; THE D1 1
D5 SYSTEM

Now we consider IIB string theory compactified on M 4 (where M 4 5
T 4 or K3) to six spacetime dimensions. As a first example let us start with
a D-fivebrane with four dimensions wrapping on M 4 giving a string in six

dimensions. Consider a system with Q5 fivebranes and Q1 D-strings, where

the D-string is parallel to the string in six dimensions arising from the

fivebrane. This system is described at low energies by a (1 1 1)-dimensional

(4, 4) superconformal field theory. So we take the limit

a 8 ® 0,
r

a 8
5 fixed, v [

V4

(2 p )4 a 82
5 fixed, g6 5

g

! v
5 fixed

(4.1)
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where V4 is the volume of M 4. All other moduli of M 4 remain fixed. This

is just a low-energy limit; we keep all dimensionless moduli fixed. As a six-

dimensional theory, IIB on M 4 contains strings. They transform under the
U-duality group and they carry charges given by a vector q I. In general we

can consider a configuration where q2 5 h IJq
Iq J Þ 0 (the metric is the U-

duality group invariant), and then take the limit (4.1).

This theory has a branch which we will call the Higgs branch and one

which we call the Coulomb branch. On the Higgs branch the (1 1 1)-

dimensional vector multiplets have zero expectation value and the Coulomb
branch is the other one. Notice that the expectation values of the vector

multiplets in the Coulomb branch remain fixed as we take the limit a 8 ® 0.

The Higgs branch is an SCFT with (4, 4) supersymmetry. This is the

theory considered in ref. 39. The above includes limit also a piece of the

Coulomb branch, since we can separate the branes by a distance such that

the mass of stretched strings remains finite.
Now we consider the supergravity solution corresponding to D1 1 D5

branes [40]:

ds2 5 f 2 1/2
1 f 2 1/2

5 dx2
| 1 f 1/2

1 f 1/2
5 (dr 2 1 r 2d V 2

3) (4.2)

f1 5 1 1 1
g a 8Q1

vr 2 2 , f5 5 1 1 1
g a 8Q5

r 2 2
where dx2

| 5 2 dt 2 1 dx 2 and x is the coordinate along the D-string. Some

of the moduli of M 4 vary over the solution and attain a fixed value at the
horizon which depends only on the charges, and some others are constant

throughout the solution. The 3-form RR-field strength is also nonzero.

In the decoupling limit (4.1) we can neglect the 1’ s in fi in (4.2) and

the metric becomes

ds2 5 a 8 F U 2

g6 ! Q1Q5

dx2
| 1 g6 ! Q1Q5

dU 2

U 2 1 g6 ! Q1Q5 d V 2
3 G (4.3)

The compact manifold M 4(Q) that results in the limit is determined as follows.

Some of its moduli are at their fixed point value, which depends only on the

charges and not on the asymptotic value of those moduli at infinity [the

notation M 4(Q) indicates the charge dependence of the moduli) [41]11. The

other moduli, which were constant in the black hole solution, have their

original values. For example, the volume of M 4 has the fixed point value
vfixed 5 Q1/Q5, while the six-dimensional string coupling g6 has the original

11 The fixed values of the moduli are determined by the condition that they minimize the tension
of the corresponding string (carrying charges q I ) in six dimensions [41]. This is parallel to
the discussion in four dimensions [42].
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value. Notice that there is an overall factor of a 8 in (4.3) which can be

removed by canceling it with the factor of a 8 in the Newton constant as

explained above. We can trust the supergravity solution if Q1, Q5 are large,
g6Qi

À 1. Notice that we are talking about a six-dimensional supergravity

solution since the volume of M 4 is a constant in Planck units (we keep the

Q1/Q5 ratio fixed). The metric (4.3) describes three-dimensional AdS3 times

a 3-sphere. The supersymmetries work out correctly; starting from the 8

PoincareÂsupersymmetries we enhance then to 16 supersymmetries. The bos-

onic component is SO(2, 2) 3 SO(4). In conformal field theory language
SO(2, 2) is just the SL(2, R) 3 SL(2, R) part of the conformal group and

SO(4) , SU(2)L 3 SU(2)R are the R-symmetries of the CFT [43].

So the conjecture is that the (1 1 1)-dimensional CFT describing the
Higgs branch of the D1 1 D5 system on M 4 is dual to type IIB string theory
on (AdS3 3 S 3)Q1Q5 3 M 4(Q). The subscript indicates that the radius of the

3-sphere is R2
sph 5 a 8g6 ! Q1Q5. The compact fourmanifold M 4(Q) is at some

particular point in moduli space determined as follows. The various moduli

of M 4 are divided as tensors and hypers according to the (4, 4) supersymmetry

on the brane. Each hypermultiplet contains four moduli and each tensor

contains a modulus and an anti-self-dual B-field. (There are five tensors of

this type for T 4 and 21 for K3.) The scalars in the tensors have fixed point
values at the horizon of the black hole, and those values are the ones entering

in the definition of M 4(Q) (Q indicates the dependence on the charges). The

hypers will have the same expectation value everywhere. It is necessary for

this conjecture to work that the (1 1 1)-dimensional (4, 4) theory is indendant

of the tensor moduli appearing in its original definition as a limit of the

brane configurations, since M 4(Q) does not depend on those moduli. A
nonrenomalization theorem like that in refs. 44 and 45 would explain this.

We also need the Higgs branch decouples from the Coulomb branch as in

refs. 46 and 47.

Finite-temperature configurations in the 1 1 1 conformal field theory

can be considered. They correspond to near-extremal black holes in AdS3.

The metric is the same as that of the BTZ (2 1 1)-dimensional black hole
[48], except that the angle of the BTZ description is not periodic. This angle

corresponds to the spatial direction x of the (1 1 1)-dimensional CFT and

it becomes periodic if we compactify the theory [49±51].12,13 All calculations

12 I thank G. Horowitz for many discussions on this correspondence and for pointing out ref.
49 to me. Some of the remarks below arose in conversations with him.

13 The ideas in refs. 49±51 could be used to show the relation between the AdS region and
black holes in M-theory on a lightlike circle. However, the statement in refs. 49±51 that the
AdS3 3 S 3 spacetime is U-dual to the full black hole solution (which is asymptotic to
Minkowski space) should be taken with caution because in those cases the spacetime has
identifications on circles that are becoming null. This changes dramatically the physics. For
examples of these changes see refs. 32 and 52.



1126 Maldacena

done for the 1D 1 5D system [39, 53, 54] are evidence for this conjecture.

In all these cases [54] the nontrivial part of the greybody factors comes from

the AdS part of the spacetime. Indeed, it was noticed in ref. 55 that the
greybody factors for the BTZ black hole were the same as the ones for the

five-dimensional black hole in the dilute-gas approximation. The dilute-gas

condition r0, rn
¿ r1r5 [53] is automatically satisfied in the limit (4.1)

for finite-temperature configurations (and finite chemical potential for the

momentum along xÃ). It was also noticed that the equations have an SL(2, R) 3
SL(2, R) symmetry [56], these are the isometries of AdS3, and part of the
conformal symmetry of the (1 1 1)-dimensional field theory. It would be

interesting to understand the gravitational counterpart of the full conformal

symmetry group in 1 1 1 dimensions.

5. THEORIES WITH 4 ® 8 SUPERSYMMETRIES

The theories of this type will be related to black strings in five dimensions

and Reissner±NordstroÈ m black holes in four dimensions. This part will be

more sketchy, since there are several details of the conformal field theories
involved which I do not completely understand, most notably the dependence

on the various moduli of the compactification.

5.1 Black String in Five Dimensions

One can think about this case as arising from M-theory on M 6 where
M 6 is a CY manifold, K3 3 T 2 or T 6. We wrap fivebranes on a 4-cycle P4 5
pA a A in M 6 with nonzero triple self-intersection number [57]. We are left

with a one-dimensional object in five spacetime dimensions. Now we take

the following limit:

lp ® 0, (0 p )6v [ V6 /l 6
p 5 fixed, U 2 [ r/l 3

p 5 fixed (5.1)

where lp is the 11-dimensional Planck length. In this limit the theory will

reduce to a conformal field theory in two dimensions. It is a (0, 4) CFT and

it was discussed in some detail in a region of the moduli space in ref. 57.
More generally we should think that the five-dimensional theory has some

strings characterized by charges p A, forming a multiplet of the U-duality

group, and we are taking a configuration where the triple self-intersection

number p3 is nonzero (in the case M6 5 T 6, p3 [ D [ DABCp ApBpC is the

cubic E 6 invariant).

We now take the corresponding limit of the black hole solution. We will
just present the near-horizon geometry, obtained after taking the limit. Near

the horizon all the vector moduli are at their fixed point values [58]. So the

near-horizon geometry can be calculated by considering the solution with

constant moduli. We get
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ds2 5 l 2
p F U 2v1/3

D1/3 ( 2 dt 2 1 dx 2) 1
D2/3

v2/3 1 4
dU 2

U 2 1 d V 2
2 2 G (5.2)

In this limit M 6 has its vector moduli equal to their fixed point values, which

depend only on the charge, while its hyper moduli are what they were at

infinity. The overall size of M 6 in Planck units is a hypermultiplet, so it

remains constant as we take the limit (5.1). We get a product of three-

dimensional AdS3 spacetime with a 2-sphere, AdS3 3 S 2. Defining the five-

dimensional Planck length by l3
5p 5 l 3

p /v, we find that the ª radiiº of the 2-
sphere and the AdS3 are Rsph 5 RAdS /2 5 l5p D1/3. In this case the superconfor-

mal group contains as a bosonic subgroup SO(2, 2) 3 SO(3). So the R-

symmetries are just SU(2)R , associated with the four right-moving

supersymmetries.

In this case we conjecture that this (0, 4) conformal field theory is dual,
for large p A, to M-theory on AdS3 3 S 2 3 M 6

p. The hypermultiplet moduli

of M 6
p are the same as the ones entering the definition of the (0, 4) theory.

The vector moduli depend only on the charges and their values are those

that the black string has at the horizon. A necessary condition for this conjec-

ture to work is that the (0, 4) theory should be independent of the original

values of the vector moduli (at least for large p). It is not clear to me whether
this is true.

Using this conjecture, we would get for large N a compactification of

M theory which has five extended dimensions.

5.2 Extremal (3 1 1)-Dimensional Reissner ± NordstroÈ m

This section is sketchier and contains an unresolved puzzle, so the reader

will not miss much by skipping it.

We start with IIB string theory compactified on M 6, where M 6 is a

Calabi±Yau manifold or K3 3 T 2 or T 6. We consider a configuration of D3
branes that leads to a black hole with nonzero horizon area. Consider the limit

a 8 ® 0, (2 p )6v [
V6

a 83
5 fixed, U [

r

a 8
5 fixed (5.3)

The string coupling is arbitrary. In this limit the system reduces to quantum

mechanics on the moduli space of the threebrane configuration.

Taking the limit (5.3) of the supergravity solution, we find

ds2 5 a 8 F U 2

g2
4N 2 dt 2 1 g2

4N 2 dU 2

U 2 1 g2
4N 2 d V 2

2 G (5.4)
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where N is proportional to the number of D3 branes. We find a two-dimen-

sional AdS2 space times a 2-sphere, both with the same radius R 5 l4p N,

where l2
4p 5 g2 a 8/v. The bosonic symmetries of AdS2 3 S 2 are SO(2, 1) 3

SO(3). This superconformal symmetry seems related to the symmetries of

the chiral conformal field theory that was proposed in ref. 59 to describe the

Reissner±NordstroÈ m black holes. Here we find a puzzle, since in the limit

(5.3) we obtained a quantum mechanical system and not a (1 1 1)-dimensional

conformal field theory. In the limit (5.3) the energy gap (mentioned in refs.

60 and 59) becomes very large.14 So it looks like taking a large-N limit at
the same time will be crucial in this case. These problems might be related

to the large ground-state entropy of the system.

If this is understood, it might lead to a proposal for a nonperturbative

definition of M/string theory (as a large-N limit) when there are four non-

compact dimensions.

It is interesting to consider the motion of probes on the AdS2 background.
This corresponds to going into the ª Coulombº branch of the quantum mechan-

ics. Dimensional analysis says that the action has the form (2.7) with p 5
0. Expanding f to first order, we find S , * dt UÇ 2/U 3 , * dt v2/r 3, which

is the dependence on r that we expect from supergravity when we are close

to the horizon. A similar analysis for Reissner±NordstroÈ m black holes in
five dimensions would give a term proportional to 1/r 4 [17]. It will be

interesting to check the coefficient (note that this is the only term allowed

by the symmetries, as opposed to ref. 17).

6. DISCUSSION; RELATION TO MATRIX THEORY

By deriving various field theories from string theory and considering

their large-N limit we have shown that they contain in their Hilbert space

excitations describing supergravity on various spacetimes. We further

conjectured that the field theories are dual to the full quantum M/string

theory on various spacetimes. In principle, we can use this duality to

give a definition of M/string theory on flat spacetime as (a region of)
the large-N limit of the field theories. Notice that this is a nonperturbat ive

proposal for defining such theories, since the corresponding field theories

can, in principle, be defined nonperturbatively. We are only scratching

the surface and there are many things to be worked out. In ref. 61 it has

been proposed that the large-N limit of D0 brane quantum mechanics

would describe 11-dimensional M-theory. The large-N limits discussed
above also provide a definition of M-theory. An obvious difference with

the matrix model of ref. 61 is that here N is not interpreted as the

14 I thank A. Strominger for pointing this out to me.
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momentum along a compact direction. In our case, N is related to the

curvature and the size of the space where the theory is defined. In both

cases, in the large-N limit we expect to get flat, noncompact spaces. The
matrix model [61] gives us a prescription to build asymptotic states; we

have not shown here how to construct graviton states, and this is a very

interesting problem. On the other hand, with the present proposal it is

clearer that we recover supergravity in the large-N limit.

This approach leads to proposals involving five (and maybe in

some future four) noncompact dimensions. The five-dimensional proposal
involves considering the (1 1 1)-dimensional field theory associated with

a black string in five dimensions. These theories need to be studied in

much more detail than we have done here.

It seems that this correspondence between the large-N limit of field

theories and supergravity can be extended to nonconformal field theories.

An example was considered in ref. 1, where the theory of NS fivebranes
was studied in the g ® 0 limit. A natural interpretation for the throat

region is that it is a region in the Hilbert space of a six-dimensional

ª stringº theory,15 and the fact that contains gravity in the large-N limit

is just a common feature of the large-N limit of various field theories.

The large-N master field seems to be the anti-de Sitter supergravity
solutions [17].

When we study nonextremal black holes in AdS spacetimes we are

no longer restricted to low energies, as we were in the discussion in

higher dimensions [44, 54]. The restriction came from matching the AdS
region to the Minkowski region. So the five-dimensional results [53, 54]

can be used to describe arbitrary nonextremal black holes in three-
dimensional anti-deSitter spacetimes. This might lead us to understand

better where the degrees of freedom of black holes really are, as well as

the meaning of the region behind the horizon. The question of the boundary

conditions is very interesting and the conformal field theories should

provide us with some definite boundary conditions and will probably

explain how to interpret physically spacetimes with horizons. It would be
interesting to find the connection with the description of (2 1 1)-

dimensional black holes proposed by Carlip [63].

In refs. 8 and 13 supersingleton representations of AdS were studied

and it was proposed that they would describe the dynamics of a brane

ª at the end of the world.º It was also found that in maximally supersymmet-

ric cases it reduces to a free field [8]. It is tempting therefore to identify
the singleton with the center-of-mass degree of freedom of the branes [6,

15 This possibility was also raised in ref. 62, though it is a bit disturbing to find a constant
energy flux to the UV (that is how we are interpreting the radial dimension).
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13]. A recent paper suggested that supersingletons would describe all the

dynamics of AdS [51]. The claim of the present paper is that all the

dynamics of AdS reduces to previously known conformal field theories.
It seems natural to study conformal field theories in Euclidean space

and relate them to de Sitter spacetimes.

Also it would be nice if these results could be extended to four-dimen-

sional gauge theories with less supersymmetry.

APPENDIX

The (D 5 p 1 2)-dimensional anti-de Sitter spacetimes can be obtained
by taking the hyperboloid

2 X 2
2 1 2 X 2

0 1 X 2
1 1 ? ? ? 1 X 2

p 1 X 2
p 1 1 5 2 R2 (A.1)

embedded in a flat (D 1 1)-dimensional spacetime with the metric h 5
Diag( 2 1, 2 1, 1, . . . , 1). We will call R ª radiusº of AdS spacetime. The

symmetry group SO(2, D 2 1) 5 SO(2, p 1 1) is obvious in this description.

In order to make contact with the previously presented form of the metric,

let us define the coordinates

U 5 (X 2 1 1 Xp 1 1)

x a 5
X a R

U
, a 5 0, 1, . . . , p (A.2)

V 5 (X 2 1 2 Xp 1 1) 5
x2U

R2 1
R2

U

The induced metric on the hyperboloid (7.1) becomes

ds2 5
U 2

R2 dx2 1 R2 dU 2

U 2 (A.3)

This is the form of the metric used in the text. We could also define UÄ 5
U/R2 so that metric (A.3) has an overall factor of R2, making it clear that R
is the overall scale of the metric. The region outside the horizon corresponds
to U . 0, which is only a part of (A.1). It would be interesting to understand

what the other regions in the AdS spacetime correspond to. For further

discussion see ref. 65.
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